Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
MethodsX ; 10: 102194, 2023.
Article in English | MEDLINE | ID: covidwho-2296787

ABSTRACT

Rapid and effective detection of the diagnosis and prognosis of COVID-19 disease is important in terms of reducing the mortality of the disease and reducing the pressure on health systems. Methods such as PCR testing and computed tomography used for this purpose in current health systems are costly, require an expert team and take time. This study offers a fast, economical and reliable approach for the early diagnosis and prognosis of infectious diseases, especially COVID-19. For this purpose, characteristics of a large population of COVID-19 patients were determined (51 different routine blood values) and calibrated. In order to determine the diagnosis and prognosis of the disease, the calibrated features were run with the LogNNet model. LogNNet has a simple algorithm and performance indicators comparable to the most efficient algorithms available.This approach pointed out that routine blood values contain important information, especially in the detection of COVID-19, and showed that the LogNNet model can be used as an economical, safe and fast alternative tool in the diagnosis of this disease.-In the LogNNet feedforward neural network, a feature vector is passed through a specially designed reservoir matrix and transformed into a new feature vector of a different size, increasing the classification accuracy.-The presented network architecture can achieve 80%-99% classification accuracy using a range of weightings on devices with a total memory size of 1 to 29 kB constrained.-Due to the chaotic mapping procedures, the RAM usage in the LogNNet neural network processing process is greatly reduced. Hence, optimization of chaotic map parameters has an important function in LogNNet neural network application.

2.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071711

ABSTRACT

Healthcare digitalization requires effective applications of human sensors, when various parameters of the human body are instantly monitored in everyday life due to the Internet of Things (IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an important option for IoT application in healthcare and ambient assisted living (AAL). Determining a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and the LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB) (accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL, cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 features and their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.


Subject(s)
COVID-19 , Internet of Things , Humans , COVID-19/diagnosis , Cholesterol, HDL , Machine Learning , Amylases , Triglycerides
3.
Sensors (Basel) ; 22(13)2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1911521

ABSTRACT

Since February 2020, the world has been engaged in an intense struggle with the COVID-19 disease, and health systems have come under tragic pressure as the disease turned into a pandemic. The aim of this study is to obtain the most effective routine blood values (RBV) in the diagnosis and prognosis of COVID-19 using a backward feature elimination algorithm for the LogNNet reservoir neural network. The first dataset in the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 tests. The LogNNet-model achieved the accuracy rate of 99.5% in the diagnosis of the disease with 46 features and the accuracy of 99.17% with only mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, and activated partial prothrombin time. The second dataset consists of a total of 3899 patients with a diagnosis of COVID-19 who were treated in hospital, of which 203 were severe patients and 3696 were mild patients. The model reached the accuracy rate of 94.4% in determining the prognosis of the disease with 48 features and the accuracy of 82.7% with only erythrocyte sedimentation rate, neutrophil count, and C reactive protein features. Our method will reduce the negative pressures on the health sector and help doctors to understand the pathogenesis of COVID-19 using the key features. The method is promising to create mobile health monitoring systems in the Internet of Things.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Neural Networks, Computer , Pandemics , Prognosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL